Fractional Zener

using RHEOS
# include a helper function for plotting
include("assets/plothelper.jl");
Fract_Zener

Model name: frac_zener

Free parameters: cₐ, a, cᵦ, β, cᵧ and γ


                  ______╱╲__________╱╲______
                 |      ╲╱          ╲╱      |
          _______|      cₐ,a         cᵦ, β  |_______
                 |                          |
                 |____________╱╲____________|
                              ╲╱
                              cᵧ, γ
                     

Constitutive Equation

\[\sigma(t) + \frac{c_\alpha}{c_\beta} \frac{d^{\alpha-\beta} \sigma(t)}{dt^{\alpha-\beta}}= c_{\alpha} \frac{d^\alpha \epsilon(t)}{dt^\alpha} + c_\gamma \frac{d^\gamma \epsilon(t)}{dt^\gamma}+ \frac{c_\alpha c_\gamma}{c_\beta}\frac{d^{\alpha+\gamma-\beta} \epsilon(t)}{dt^{\alpha+\gamma-\beta}}\]

\[\text{for}\; \ 0 \leq \beta \leq \alpha \leq 1\]

Relaxation Modulus

\[G(t) = c_\beta t^{-\beta} E_{\alpha-\beta,1-\beta}\left(-\frac{c_\beta}{c_\alpha} t^{\alpha-\beta}\right) + \frac{c_{\gamma} }{\Gamma(1-\gamma)} t^{-\gamma}\]

Creep Modulus

\[\tilde{J}(s)= \frac{1}{s}\frac{c_\alpha s^{\alpha}+c_\beta s^{\beta}}{c_\alpha s^\alpha c_\beta s^{\beta} + c_\gamma s^\gamma (c_\alpha s^\alpha+c_\beta s^\beta)}\]

Storage Modulus

\[G^{\prime}(\omega) = \frac{\left(c_\beta \omega^\beta\right)^2 \cdot c_\alpha \omega^\alpha \cos(\alpha \frac{\pi}{2}) + \left(c_\alpha \omega^\alpha\right)^2 \cdot c_\beta \omega^\beta \cos(\beta \frac{\pi}{2})}{\left(c_\alpha \omega^\alpha\right)^2+\left(c_\beta \omega^\beta\right)^2+2c_\alpha \omega^\alpha \cdot c_\beta \omega^\beta \cos((\alpha-\beta)\frac{\pi}{2})} + c_\gamma \omega^\gamma \cos\left(\gamma \frac{\pi}{2}\right)\]

Loss Modulus

\[G^{\prime\prime}(\omega) = \frac{\left(c_\beta \omega^\beta\right)^2 \cdot c_\alpha \omega^\alpha \sin(\alpha \frac{\pi}{2}) + \left(c_\alpha \omega^\alpha\right)^2 \cdot c_\beta \omega^\beta \sin(\beta \frac{\pi}{2})}{\left(c_\alpha \omega^\alpha\right)^2+\left(c_\beta \omega^\beta\right)^2+2c_\alpha \omega^\alpha \cdot c_\beta \omega^\beta \cos((\alpha-\beta)\frac{\pi}{2})}+ c_\gamma \omega^\gamma \sin\left(\gamma \frac{\pi}{2}\right)\]

Fractional SLS (Zener)

FractSLS_Zener

Model name: fracsls_Zener

Free parameters: cₐ, a, kᵦ and kᵧ


                _____╱╲_______╱╲  ╱╲  ╱╲  _____
               |     ╲╱         ╲╱  ╲╱  ╲╱     |
        _______|       cₐ,a              kᵦ    |_______
               |                               |
               |__________╱╲  ╱╲  ╱╲  _________|
                            ╲╱  ╲╱  ╲╱
                                 kᵧ
                   
models = Vector{RheoModel}()

# plot moduli for varying α
for alpha in [0.1, 0.25, 0.5, 0.74, 0.9]

    push!(models, RheoModel(FractSLS_Zener, (cₐ = 1, a = alpha, kᵦ = 1, kᵧ = 1)))

end

plotmodel(models)

Fractional Jeffreys (Zener)

FractJeffreys_Zener

Model name: fjeff_Zener

Free parameters: ηₐ, cᵦ, β and ηᵧ


                                    ___
                            _________| |_________╱╲________
                           |        _|_|         ╲╱        |
                    _______|          ηₐ            cᵦ, β  |_______
                           |              ___              |
                           |_______________| |_____________|
                                          _|_|
                                             ηᵧ
                               
models = Vector{RheoModel}()

# plot moduli for varying β
for beta in [0.1, 0.25, 0.5, 0.74, 0.9]

    push!(models, RheoModel(FractJeffreys_Zener, (ηₐ = 1, cᵦ = 1, β = beta, ηᵧ = 1)))

end

plotmodel(models, ymaxG = 2.0)

Standard Linear Solid (Zener)

SLS_Zener

Model name: SLS_Zener

Free parameters: η, kᵦ and kᵧ

                      ___
                  _____| |________╱╲  ╱╲  ╱╲  ___
                 |    _|_|          ╲╱  ╲╱  ╲╱   |
          _______|      η                  kᵦ    |_______
                 |                               |
                 |__________╱╲  ╱╲  ╱╲  _________|
                              ╲╱  ╲╱  ╲╱
                                   kᵧ
                     
models = Vector{RheoModel}()

# plot moduli for varying kᵦ
for k in [1.0, 3.0, 5.0]

    push!(models, RheoModel(SLS_Zener, (η = 1, kᵦ = k, kᵧ = 1)))

end

plotmodel(models)

Jeffreys (Zener)

Jeffreys_Zener

Model name: jeffreys_Zener

Free parameters: ηₐ, k and ηᵧ


                              ___
                        _______| |_______╱╲  ╱╲  ╱╲  ___
                       |      _|_|         ╲╱  ╲╱  ╲╱  |
                _______|          ηₐ            k      |_______
                       |              ___              |
                       |_______________| |_____________|
                                      _|_|
                                         ηᵧ
                           
models = Vector{RheoModel}()

# plot moduli for varying ηₐ
for eta in [1.0, 5.0, 8.0]

    push!(models, RheoModel(Jeffreys_Zener, (ηₐ = eta, k = 3, ηᵧ = 1)))

end

plotmodel(models)

Fractional Solid

FractSolid

Model name: fractsolid

Free parameters: η, cᵦ, β and k

                      ___
                  _____| |__________╱╲__________
                 |    _|_|          ╲╱          |
             ___ |      η              cᵦ, β    |___
                 |                              |
                 |__________╱╲  ╱╲  ╱╲  ________|
                              ╲╱  ╲╱  ╲╱
                                k
               
models = Vector{RheoModel}()

# plot moduli for varying β
for beta in [0.1, 0.25, 0.5, 0.74, 0.9]

    push!(models, RheoModel(FractSolid, (η = 1, cᵦ = 1, β = beta, k = 0.5)))

end

plotmodel(models, ymaxG = 2)

This page was generated using Literate.jl.