Fractional Maxwell
using RHEOS
# include a helper function for plotting
include("assets/plothelper.jl");
Fract_Maxwell
Model name: fractmaxwell
Free parameters: cₐ, a, cᵦ and β
___╱╲__________╱╲____
╲╱ ╲╱
cₐ,a cᵦ, β
Constitutive Equation
\[\sigma(t) + \frac{c_\alpha}{c_\beta} \frac{d^{\alpha-\beta} \sigma(t)}{dt^{\alpha-\beta}}= c_{\alpha} \frac{d^\alpha \epsilon(t)}{dt^\alpha}\]
\[\text{for}\; \ 0 \leq \beta \leq \alpha \leq 1\]
Relaxation Modulus
\[G(t) = c_\beta t^{-\beta} E_{\alpha-\beta,1-\beta}\left(-\frac{c_\beta}{c_\alpha} t^{\alpha-\beta}\right)\]
Creep Modulus
\[J(t) = \frac{1}{c_\alpha \Gamma(1+\alpha)}t^\alpha+\frac{1}{c_\beta \Gamma(1+\beta)}t^\beta\]
Storage Modulus
\[G^{\prime}(\omega) = \frac{\left(c_\beta \omega^\beta\right)^2 \cdot c_\alpha \omega^\alpha \cos(\alpha \frac{\pi}{2}) + \left(c_\alpha \omega^\alpha\right)^2 \cdot c_\beta \omega^\beta \cos(\beta \frac{\pi}{2})}{\left(c_\alpha \omega^\alpha\right)^2+\left(c_\beta \omega^\beta\right)^2+2c_\alpha \omega^\alpha \cdot c_\beta \omega^\beta \cos((\alpha-\beta)\frac{\pi}{2})}\]
Loss Modulus
\[G^{\prime\prime}(\omega) = \frac{\left(c_\beta \omega^\beta\right)^2 \cdot c_\alpha \omega^\alpha \sin(\alpha \frac{\pi}{2}) + \left(c_\alpha \omega^\alpha\right)^2 \cdot c_\beta \omega^\beta \sin(\beta \frac{\pi}{2})}{\left(c_\alpha \omega^\alpha\right)^2+\left(c_\beta \omega^\beta\right)^2+2c_\alpha \omega^\alpha \cdot c_\beta \omega^\beta \cos((\alpha-\beta)\frac{\pi}{2})}\]
Fractional (Spring) Maxwell
FractS_Maxwell
Model name: fractmaxwell_spring
Free parameters: cₐ, a and k
___╱╲_________╱╲ ╱╲ ╱╲ ________
╲╱ ╲╱ ╲╱ ╲╱
cₐ,a k
models = Vector{RheoModel}()
# plot moduli for varying α
for alpha in [0.1, 0.3, 0.5, 0.7, 0.9]
push!(models, RheoModel(FractS_Maxwell, (cₐ = 1.0, a = alpha, k = 1.0)))
end
plotmodel(models)
Fraction (Dashpot) Maxwell
FractD_Maxwell
Model name: fractmaxwell_dashpot
Free parameters: η, cᵦ and β
___
_____| |_________╱╲____
_|_| ╲╱
η cᵦ, β
models = Vector{RheoModel}()
# plot moduli for varying β
for beta in [0.1, 0.3, 0.5, 0.7, 0.9]
push!(models, RheoModel(FractD_Maxwell, (η = 10, cᵦ= 1.0, β = beta)))
end
plotmodel(models, ymaxG = 2.0)
Maxwell
Maxwell
Model name: maxwell
Free parameters: η and k
___
_____| |________╱╲ ╱╲ ╱╲ ___
_|_| ╲╱ ╲╱ ╲╱
η k
models = Vector{RheoModel}()
# plot moduli for varying k
for k in [5.0, 10.0, 20.0]
push!(models, RheoModel(Maxwell, (η = 10, k = k)))
end
plotmodel(models)
This page was generated using Literate.jl.