Springpot
using RHEOS
# include a helper function for plotting
include("assets/plothelper.jl");
By typing the name of the model, it is possible to visualise its graphical representation and its parameters.
Springpot
Model name: springpot
Free parameters: cᵦ and β
____ ╱╲ ____
╲╱ cᵦ, β
Constitutive Equation
\[\sigma(t) = c_{\beta} \frac{d^\beta \epsilon(t)}{dt^\beta}\]
\[\text{for}\; \ 0 \leq \beta \leq 1\]
Relaxation Modulus
\[G(t) = \frac{c_{\beta} }{\Gamma(1-\beta)} t^{-\beta}\]
Creep Modulus
\[J(t) = \frac{1}{c_\beta \Gamma(1+\beta)}t^\beta\]
Storage Modulus
\[G^{\prime}(\omega) = c_\beta \omega^\beta \cos(\frac{\pi}{2}\beta)\]
Loss Modulus
\[G^{\prime\prime}(\omega) = c_\beta \omega^\beta \sin(\frac{\pi}{2}\beta)\]
Spring
When β = 0 the springpot specialises to a spring.
Spring
Model name: spring
Free parameters: k
___╱╲ ╱╲ ╱╲ ________
╲╱ ╲╱ ╲╱ k
Dashpot
When β = 1 the springpot specialises to a dashpot.
Dashpot
Model name: dashpot
Free parameters: η
___
_____| |_____
_|_|
η
Qualitative Behaviours of the Moduli
models = Vector{RheoModel}()
# Spring
push!(models, RheoModel(Spring, k = 1.0))
# plot moduli for varying β
for beta in [0.2, 0.5, 0.8]
push!(models, RheoModel(Springpot, cᵦ = 1.0, β = beta))
end
# Dashpot
push!(models, RheoModel(Dashpot, η = 1.0))
plotmodel(models, ymaxG = 2.0)
This page was generated using Literate.jl.