Burgers (Liquid)
using RHEOS
# include a helper function for plotting
include("assets/plothelper.jl");
BurgersLiquid
Model name: burgerliquid
Free parameters: η₁, k₁, η₂ and k₂
___
_________| |________
___ | _|_| η₂ |
_____| |________╱╲ ╱╲ ╱╲ _______| |____
_|_| ╲╱ ╲╱ ╲╱ | |
η₁ k₁ |____╱╲ ╱╲ ╱╲ ____|
╲╱ ╲╱ ╲╱
k₂
Constitutive Equation
\[\sigma(t) + p_1 \frac{d \sigma(t)}{dt} + p_2 \frac{d^2 \sigma(t)}{dt^2} = q_1 \frac{d \epsilon(t)}{dt} + q_2 \frac{d^2 \epsilon(t)}{dt^2}\]
\[\text{where}\; \ p_1 = \frac{\eta_1}{k_1}+\frac{\eta_1}{k_2}+\frac{\eta_1}{k_2}\text{,}\; \ p_2 = \frac{\eta_1 \eta_2}{k_1 k_2}\text{,}\; \ q_1 = \eta_1\; \ \text{and}\; \ q_2 = \frac{\eta_1 \eta_2}{k_2}\]
Relaxation Modulus
\[G(t) = \left[ \left(q_1 - q_2 r_1\right) e^{-r_1 t} - \left(q_1 - q_2 r_2\right) e^{-r_2 t} \right]/A\]
\[\text{where}\; \ r_1 = (p_1-A)/2p_2 \text{,}\; \ r_2 = (p_1 +A) /2p_2 \text{, and}\; \ A = \sqrt{p_1^2 - 4p_2}\]
Creep Modulus
\[J(t) = \frac{1}{k_1} + \frac{t}{\eta_1} + \frac{1}{k_2} \left(1-e^{-k_2 t/\eta_2}\right)\]
Storage Modulus
\[G^{\prime}(\omega) = \frac{p_1 q_1 \omega^2 - q_2 \omega^2 (1-p_2 \omega^2)}{p_1^2 \omega^2 + (1-p_2 \omega^2)^2}\]
Loss Modulus
\[G^{\prime \prime}(\omega) = \frac{p_1 q_2 \omega^3 + q_1 \omega (1-p_2 \omega^2)}{p_1^2 \omega^2 + (1-p_2 \omega^2)^2}\]
Qualitative Behaviours of the Moduli
models = Vector{RheoModel}()
# plot moduli for varying k₁
for k in [0.5, 1.0, 2.0]
push!(models, RheoModel(BurgersLiquid, (η₁ = 1, k₁ = k, η₂ = 1, k₂ = 1)))
end
plotmodel(models)
Reference: Findley, William N., and Francis A. Davis. Creep and relaxation of nonlinear viscoelastic materials. Courier Corporation, 2013.
This page was generated using Literate.jl.